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Abstract

Background

Monogenic autoinflammatory diseases (AID) are a rapidly expanding group of genetically
diverse but phenotypically overlapping systemic inflammatory disorders associated with
dysregulated innate immunity. They cause significant morbidity, mortality and economic bur-
den. Here, we aimed to develop and evaluate the clinical impact of a NGS targeted gene
panel, the “Vasculitis and Inflammation Panel” (VIP) for AID and vasculitis.

Methods

The Agilent SureDesign tool was used to design 2 versions of VIP; VIP1 targeting 113
genes, and a later version, VIP2, targeting 166 genes. Captured and indexed libraries (QXT
Target Enrichment System) prepared for 72 patients were sequenced as a multiplex of 16
samples on an lllumina MiSeq sequencer in 150bp paired-end mode. The cohort comprised
22 positive control DNA samples from patients with previously validated mutations in a vari-
ety of the genes; and 50 prospective samples from patients with suspected AID in whom
previous Sanger based genetic screening had been non-diagnostic.

Results

VIP was sensitive and specific at detecting all the different types of known mutations in 22
positive controls, including gene deletion, small INDELS, and somatic mosaicism with allele
fraction as low as 3%. Six/50 patients (12%) with unclassified AID had at least one class 5
(clearly pathogenic) variant; and 11/50 (22%) had at least one likely pathogenic variant
(class 4). Overall, testing with VIP resulted in a firm or strongly suspected molecular diagno-
sis in 16/50 patients (32%).
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Conclusions

The high diagnostic yield and accuracy of this comprehensive targeted gene panel validate
the use of broad NGS-based testing for patients with suspected AID.

Introduction

Monogenic autoinflammatory diseases (AID) are a group of severe systemic inflammatory dis-
orders characterized by episodic or persistent and seemingly unprovoked systemic inflamma-
tion, without evidence of persistent high-titre autoantibodies or antigen-specific T lymphocytes,
which are associated with a substantial risk of AA amyloidosis [1-3]. AID are clinically and
genetically heterogeneous, with almost 40 monogenic diseases now described, and probably
many others still to be characterised [4]. AID causes significant burden of disease and poor qual-
ity-of-life due to variable organ involvement including: arthralgia/arthritis, myalgia, serositis,
neurological involvement, intellectual impairment, sight-threatening inflammatory eye disease,
hearing loss, retardation of growth and development, skin rashes, vasculitis, intestinal inflam-
mation, haemophagocytic lymphohistiocytosis [4], infertility, and many other severe inflamma-
tory complications [1]. Diagnosis is particularly difficult since individually these are rare
diseases, with overlapping clinical presentation across different monogenic disorders, and with
considerable phenotypic variation even within affected individuals from the same family [3, 4].

Securing a molecular diagnosis is of major importance for treatment, prognosis, and genetic
counselling. The traditional strategy of gene-by-gene testing by sequential Sanger sequencing is
time-consuming and costly, and often sequencing is not routinely available for the ever expanding
list of relevant genes. Moreover, most centres who routinely screen for genetic AID only offer
screening of common disease harbouring exons of a minority of the known AID genes, including
in the UK, where screening for 6 diseases is currently routinely available: Cryopyrin-Associated
Periodic Syndromes (CAPS), Mevalonate Kinase Deficiency (MKD) also known as Hyper IgD Sy-
ndrome (HIDS), Tumour Necrosis Factor-(TNF) Receptor Associated Periodic Fever Syndrome
(TRAPS), Familial Mediterranean Fever (FMF), Familial Cold Autoinflammatory Syndrome 2
(FCAS2), Blau’s syndrome; and for the hereditary amyloidoses. Next-generation sequencing
(NGS) provides an opportunity to screen all exons of many monogenic diseases quickly and
cheaply, but thus far has mainly been used in the context of research studies, with limited data on
the clinical impact for patients with AID. This approach also has the ability to quantify allele fre-
quency through depth-of-coverage, and has enabled the identification and characterization of
somatic mosaicism, of particular clinical relevance for dominantly inherited AID [5-9]. A targeted
panel approach, which restricts analysis to genes known to be implicated in a particular pheno-
type, was recently described to be successful for detecting known variants in 10 AID genes [10],
however, the performance of this approach for use as a genetic screening tool in AID patients
with unknown molecular diagnoses has not yet been comprehensively assessed.

The objectives of this study were to design and validate an NGS targeted gene panel, the
“Vasculitis and Inflammation Panel” (VIP), to screen patients with undiagnosed but suspected
AID, and to evaluate this approach as a routine diagnostic service for these conditions [11, 12].

Materials and methods
Patient recruitment

This study received full ethical approval from the National Research Ethics Service, Blooms-
bury Committee, London (ethics number 08H071382); all adult subjects provided written
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informed consent to participate; and parental consent was obtained for all children involved in
the study. A total of 72 patients divided into 2 cohorts were recruited. The first cohort included
22 patients with known molecular diagnoses, and served as positive controls for testing sensitiv-
ity and specificity of the gene panel. The second group consisted of 50 patients with undiag-
nosed inflammatory diseases in whom we had failed to demonstrate a genetic cause using
standard conventional routine genetic tests (https://www.ucl.ac.uk/amyloidosis/nac/molecular-
genetic-testing). The inclusion criteria were: 1. Clinician suspicion of a genetic cause for the
observed inflammatory phenotype and 2. Signed informed consent form to participate. Whole
blood DNA samples from the patients were derived from different sources: (i) The National
Amyloidosis Centre (NAC) based at The Royal Free Hospital; (ii) Great Ormond Street Hospi-
tal NHS Foundation Trust (GOSH), and (iii) the NE Thames Regional Genetics Laboratory.

Targeted VIP gene panel and capture design

The genes for this panel were chosen following consideration of phenotypes referred to our
clinical service, which specializes in autoinflammation and vasculitis in children (at GOSH)
and autoinflammation and amyloidosis in adults (at the NAC). Important mimics of AID and
vasculitides, and three novel genes discovered by our group; WDRI [13], TRAPI and DNASE2
(manuscripts in preparation) were also included. To facilitate data analysis, the genes are listed
in 11 broad disease subgroups (Table 1). The Agilent online SureDesign tool (https://earray.
chem.agilent.com/suredesign/) was used to initially design an NGS panel targeting 113 genes
in the first iteration of the panel known as VIP1 (Table 1; see S1 Table for detailed gene list).
Version 2 of the panel (VIP2) evolved after ongoing discussion and scrutiny of the rapidly
evolving literature in this field, resulting in the addition of 53 genes inclusive of a relevant reg-
ulatory intronic region of UNCI13D, to give a final list of 166 genes (Table 1; see S2 Table for
detailed gene list). The captured sequences included all coding and untranslated exons with at
least 10 bp of the flanking intronic sequence to cover canonical splicing donor and acceptor
sites. Agilent provides a synthesis service for the capture probes. Information regarding the
designed probes for VIP1 and VIP2 are presented in S3 Table. S1 Fig is a flowchart that sum-
marizes the process of the panel development and evaluation.

Table 1. Summary of disease groups and number of genes in the vasculitis and inflammation panel
(VIP).

Disease group Number of genes— | Number of genes—
VIP1 VIP2
Aortopathies 6 20
Associated with intestinal inflammation 31 44
Autoimmune lymphoproliferative syndrome (ALPS) and 6 7
related disorders
Autoinflammatory 19 32
Complement and regulatory protein deficiencies 20 20
Vasculopathic Ehlers-Danlos syndrome 1 4
Haemophagocytic lymphobhistiocytosis (HLH) 5 8
Hereditary amyloidosis 6 12
Paediatric stroke 6 6
SLE and Aicardi-Goutieres syndrome 10 10
Vasculitis/vasculopathy 3 3
TOTAL | 113 166

VIP1: vasculitis and inflammation panel version 1; VIP2: vasculitis and inflammation panel version 2.

https://doi.org/10.1371/journal.pone.0181874.t001
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Targeted gene panel sequencing

The capture of targeted genes/regions was performed using the Agilent QXT Target Enrich-
ment system according to the manufacturer’s protocol (Version B.2, October 2014) for Illu-
mina sequencing. Briefly, genomic DNA was sheared by enzyme fragmentation, and ligated
with SureSelect Adaptor Oligo Mix. Fragment size was assessed using the TapeStation 2100
Bioanalyzer (Agilent Technologies). The adaptor ligated libraries were then amplified and
hybridized to our customized SureSelect panel. Captured libraries were indexed (barcoded),
pooled and sequenced as multiplex of 16 samples on the benchtop next generation Illumina
MiSeq sequencer in 150bp paired-end mode according to the standard protocol for this
platform. Two different versions of the Miseq sequencing kit were used: v2 for runs 1 and 2;
and the v3 kit, that offers improved chemistry to generate more sequencing reads, for runs 3
to 5.

Bioinformatics analysis

Read alignment, variant calling, and annotation were performed for the first run using three
different bioinformatics pipelines: 1. the web-based Galaxy project workflow, as previously
used for our whole exome analysis [6]; 2. an in-house pipeline, Genesis, developed at our NE
Thames Regional Genetics laboratory; and 3. the Agilent SureCall v3.5.1.46 software. For all
3 pipelines, paired end reads from Illumina MiSeq instrument were mapped to the human
genome (GRCh37) using Burrows-Wheeler Aligner (BWA)-MEM [14]. The alignment step
in Genesis and SureCall are limited only to the regions of the targeted genes. Supporting
information document (S1 File) provides details of the parameters used for both Genesis
and SureCall pipelines. The output variant call format (VCF) file from SureCall was anno-
tated through wANNOV AR, the web-based user interfaced ANNOVAR tool from Wang
Genomic Labs (http://wannovar.usc.edu/index.php) which provided allele frequencies
from public databases, and in silico predictions of pathogenicity [15]. Identified variants
were evaluated for coverage and visually inspected using the Integrative Genomics Viewer
(Broad Institute).

Pathogenicity assessment of identified variants

The workflow for detecting pathogenic mutation was a multistep process. In the first step, syn-
onymous variants were filtered out. As most pathogenic variants for rare monogenic disorders
are relatively uncommon, we excluded common polymorphic variants found in public data-
bases with minor allele frequency of more than 1%. Exceptions to this were 3 relatively com-
mon pathogenic variants that are relevant to our cohort of patients: the PRF1 monoallelic p.
A91V variant with MAF of 2% in 1000G (but as high as 9% in other populations), since this
variant is known to impair cytotoxic function of natural killer (NK) cells [16]; the p.R92Q sub-
stitution in TNFRSF1A present at 2-10% depending on ethnic background [17, 18], but con-
sidered disease-causing in some patients [17]; and the low-penetrant p.V198M in NLRP3 [19].
Public databases included the 1000 Genome Project (1IKGP) (2500 samples; http://www.
1000genomes.org), the Exome Variant Server (ESP) (6500 WES samples; http://esv.gs.
washington.edu/ESV/) and the Exome Aggregation Consortium (ExAC) database (61,468
multiethnic individuals; (http://exac.broadinstitute.org/). The identified variants were indi-
vidually assessed and classified into pathogenicity groups (Class 1: clearly not pathogenic;
Class 2: unlikely to be pathogenic; Class 3: unknown significance; Class 4: likely to be patho-
genic; Class 5; clearly pathogenic), according to the Association of Clinical Genetics Science
Practice Guidelines (ACGS) 2013 guidelines [20]. The level of evidence was assigned using the
2015 American College of Medical Genetics guidance [21]. Clinically actionable identified

PLOS ONE | https://doi.org/10.1371/journal.pone.0181874  July 27,2017 4/20


http://wannovar.usc.edu/index.php
http://www.1000genomes.org/
http://www.1000genomes.org/
http://esv.gs.washington.edu/ESV/
http://esv.gs.washington.edu/ESV/
http://exac.broadinstitute.org/
https://doi.org/10.1371/journal.pone.0181874

@' PLOS | ONE

Targeted NGS panel for autoinflammation and vasculitis

Mean depth of coverage
8 8§ 8 8§ 8 8 8 ¢8 8 8

g

8

1500

VIP targeted regions

Fig 1. Depth of coverage. Representative depth-of-coverage (DoC) plot for all 72 (16x-multiplexed/run)
captured samples using QXT targeted enrichment kit and 2 x 150 bp paired-end sequencing on lllumina
Miseq. The captured regions are ordered according to mean DoC. Red line represents 30x DoC level while
the rectangular box indicated 2.2% of the targeted regions with <30x values (mean 5, range 0-25), including
regions with no mapped reads.

https://doi.org/10.1371/journal.pone.0181874.9001

class 5 variants resulting in a molecular diagnosis were confirmed by Sanger sequencing where
indicated, and referred to our accredited genetic testing laboratory for validation. Primer
sequences and reaction conditions used for Sanger sequencing are available on request. Famil-
ial segregation analysis for potentially pathogenic mutations was performed when DNA from
family members were available, with consent.

Results
Gene coverage and the performance of VIP target enrichment

The Genesis pipeline was used to access the read depths for all the captured regions per sample.
The mean depth-of-coverage (DoC) plot over the whole targeted regions for the 5 runs of 16
multiplexed samples showed that >97% of the captured regions had mean read depth greater
than 30x, a commonly accepted cut-off for diagnostic purposes (Fig 1) [22, 23]. An exon or a
region was referred to as being a “low-coverage exon” if any single nucleotide in the exon had
a coverage <30x. Using that definition, 2.2% of the targeted regions, corresponding to 15
genes (ADAR, AP3B1, C4B, C5, CFI, COL5A2, CORO1A, IFNGR2, IKBKG, NCF1, NOTCH3,
POMP, PTEN, TNFRSF11A, VPS13B), had mean DoC<30x (mean 5, range 0-25) (see S4
Table for details). Of these regions, C4B, COROIA, IKBKG and NCF1I had reads that could not
be confidently mapped to the genome (mapping quality score of 0) because of the pseudo-gene
phenomenon [23]. Although intra-sample coverage showed some variation, coverage per
region was highly reproducible between the different multiplexed runs (16 patient DNA sam-
ples/run). By examining DoC per individual patient samples, other targeted regions in 6 genes
(AP3BI,C4B, SH2DI1A, STX11, TGFBRI and TRNT1) with mean read depth >30x (mean 173,
range 33-432) were found to have “0” reads in any one sample (indicated with an asterisks in
S4 Table). Interestingly, the absence of reads in SH2D1A and STX11 corresponded to known
pathogenic deletions in 3 samples (patient 5, 10 and 13, Table 2). These deletions were also
detected by Genesis CNV analysis. Additional baits were added to 6 regions in 5 genes (ADAR
exon 1, DCLREICexon 3, GSN exon 1 and 3, NCF2 exon 1 and TGFBRI exon 1) to improve
coverage (S5 Table).
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Table 2. Summary of the mutations identified in positive control samples.

Patient

—_

12

13
14

15
16
17
18
19
20
21
22

Diagnosis

SAVI
FHL2

FHL3

FHL3

XLP1
ALPS
FHL5
FHL2

Familial
SLE

FHL4
DADA2

DADA2

XLP1
TRAPS

CAPS
CAPS
AGS
PAPA
CAPS
Amyloidosis
Blau
ALPS

Known Gene mutated

TMEM173
PRF1

UNC13D

UNC13D

SH2D1A
CASP10
STXBP2
PRF1
PRKCD

STX11
CECR1

CECR1

SH2D1A
TNFRSF1A Mosaic
[7%]
NLRP3Mosaic [20%]
NLRP3Mosaic [3%)]
TREX1
PSTPIP1
NLRP3
TTR
NOD2
FAS

463G>A
1034C>G
¢.50delT
1090delC

€.118-308C>T (intronic)

€.2831-13 G>A
(Intronic)

2436_2437insTTGA

Gene deletion
A1216T
€.1247-1G>C
c.C272T
c.G1294T

Gene deletion
C752T

-12233delC (5UTR)

c.T2C
c.144delG
Exon 2 deletion
255_278del

C1698A
G1699A
¢.859_876del
c.G748A
¢.G2336T
delGAInsTT
G1534T
569-2A>C

Nucleotide change*

V155M
P345R
L17fs
S363RfsX1
n/a
n/a

N813delinsLN
n/a
1406L
n/a
A91V
G432W

n/a
P251L
n/a
M1T
G48Fs
n/a
85_93del

F566L
E567K
p.287_292de
E250K
G779V
E74L
D512Y
n/a

Het
Het
Het
Het
Het
Het

Het
Het
Hom
Het
Hom

Het
Het
Het
Het

Het

Het
Het
Hom
Het
Het
Het
Het
Het

Amino acid change* | Zygosity | Read depth

250
250
218
210
99
242

236
250
230
227
250

177
247
248
246

163

243
426
233
298
151
286
249
55

Allele frequency
1000G | ESP6500 | ExAC

0.0008 | 0.001
0.28 -
0.0048 | 0.0026
- 0.0002
0.02 0.034
0.0002 | 0.0001
0.07 -

0.0049
0.0003
0.0311

0.00003
0.00002
0.0002

Patients 1-16 were used in a formal blinded initial validation analysis for VIP1. Patients 17-22 were subsequently included in future runs and where thus not
included in the blinded validation analysis.
*Since each gene may have multiple splicing isoforms, the variants were annotated according to the RefSeq transcript in S1 and S2 Tables.
Het = heterozygote, Hom = homozygote, n/a = not available,— = not known. SAVI (STING-associated vasculopathy with onset in infancy), FHL (Familial
haemophagocytic lymphohistiocytosis), XLP1 (X-linked lymphoproliferative disease type 1), ALPS (Autoimmune lymphoproliferative syndrome), SLE
(Systemic lupus erythematosus), DADA2 (Deficiency of Adenosine Deaminase type 2), TRAPS (Tumour Necrosis Factor Receptor Associated Periodic
Syndrome), AGS (Aicardi—Goutieres syndrome), PAPA (pyogenic arthritis, pyoderma gangrenosum and acne), CAPS (Cryopyrin-Associated Period
Syndrome).

https://doi.org/10.1371/journal.pone.0181874.t1002

Validation of VIP capture design using DNA from patients with known

pathogenic mutations

To evaluate the sensitivity and specificity of the newly designed VIP1 gene panel, the first
run consisted solely of 16 anonymised positive control samples with 21 known pathogenic
mutations in 11 different genes previously identified using Sanger sequencing (patients 1 to
16, Table 2). An additional 6 positive controls were subsequently studied (patients 17-22,
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Table 2), but the initial validation of VIP1 was performed using samples from patients 1 to 16.
The scientist that undertook the VIP1 assay (EO) was blinded to any clinical information
about patient samples 1 to 16. VIP1 was able to blindly identify 15 of the 21 known pathogenic
mutations in the 16 patient samples, including an NLRP3 p.E567K somatic mosaic mutation
with allelic fraction of 3%. The 6 mutations that were not detected in this initial blinded analy-
sis were the SH2D1A and STX11 deletions in 3 cases (patients 5, 10 and 13) and 3 pathogenic
variants with MAF >1% in the 1000G database in 3 other cases; patients 3 with intronic
UNCI3D ¢.118-308C>T (MAF 0.28) for FHL3 [24], patient 8 with the common monoallelic
PRFI p.A91V (MAF 0.02) for FHL2 [16], and patient 11 with CECRI -12233delC in the 5’UTR
region (MAF 0.07) for deficiency of adenosine deaminase 2 (DADA) [25]. A subsequent
unblinded review of the list of variants for each of these 6 cases revealed the presence of the
originally missed variants, apart from a deep intronic variant in UNCI3D (c.118-308C>T)
which was outside the +/-10 exon-flanking boundaries of the captured design in VIP1. Manual
inspection of the sequence alignment file showed the presence of this UNC13D variant (c.118-
308C>T) in 5 of 11 reads mapping to the region. Failure to initially detect this intronic variant
was therefore attributed to low coverage. Upon excluding regions beyond the +10 and -10
exon-flanking position, which were not within the captured regions, and thus not reliably
detected, we could confirm both the expected mutations and the allele state, resulting in a
detection rate of 100%. Since UNC13D ¢.118-308C>T is a significant pathogenic variant that
is associated with familial haemophagocytic lymphohistiocytosis type 3 (FHL3) [24], we subse-
quently modified the capture design in VIP2 to include intron 1 of UNC13D.

Assessing the calling of the 21 positive variants between the 3 bioinformatic pipelines used
in this study demonstrated that the NLRP3 p.E569K mosaic mutation with low allelic fraction
of 3% (patient 16, Table 2) was only identified by SureCall. This pipeline was therefore chosen
for subsequent analysis, as it demonstrated optimal sensitivity for the detection of somatic
mosaicism. From our experience of these initial 16 positive controls, we were able to ascertain
the following four practical criteria for subsequent analyses:

1. Coverage data for genes and exons should be examined for the detection of deletions.

2. For recessive disorders where a single heterozygote rare variant is found, it is important to
examine the full list of variants without applying the MAF <0.01 cut-off filter, since the
combination of a rare pathogenic variant and a more common variant of reduced pene-
trance may cause disease in some instances.

3. Examining the consistency of the inheritance model of disease and zygosity of the mutation
is another important step to identify causative variants. Of the 166 VIP2 genes, approxi-
mately 51% are inherited as autosomal recessive, 37% as autosomal dominant and 7% as X-
linked disorders.

4. Although SureCall is a sensitive pipeline, the sequence alignment (BAM) file of relevant
genes should be manually inspected if somatic mosaicism is suspected (e.g. CAPS, TRAPS,
and Blau syndrome).

Applying these criteria to a subsequent 6 disease controls (patients 17-22, Table 2), the
known mutations in these additional positive control samples were all detected.

Performance of VIP gene panel in patients with unknown diagnoses

The sequencing procedure and bioinformatic analyses established from run 1 were tested on
50 subjects with undefined AID. Detailed descriptions of these 50 patients are provided in
Tables 3, 4 and S6. The 50 patients (23 males; 27 females) were of median age 9 years (range 7
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Table 4. Patients negative for rare variants.

Patient | Ethnicity | Consanguinity Sex | Age** Phenotype VIP1 result and results of
no. (Yrs) other next-generation
sequencing
40 White N M 7 Mild CAPS-like VIP1 negative
phenotype WES revealed class 5

Complete and AP153® mutation (p.F4C)
immediate response | associated with pustular
to canakinumab psoriasis

41 White N M 74 Amyloidosis of VIP1 negative
unknown cause

WES: whole exome sequencing

**Age at the time of this study, Consanguinity (Y = yes, N = no, U = unknown), Sex (F = female, M = male),
CAPS = Cryopyrin-Associated Autoinflammatory Syndromes

$AP153gene is in VIP2 design

https://doi.org/10.1371/journal.pone.0181874.t1004

months to 75 years), and had various clinical diagnoses prior to VIP sequencing that included
vasculitis, haemophagocytic lymphohistiocytosis, amyloidosis of unknown cause, or “unclassi-
fied autoinflammatory disease”. We identified a total of 325 rare variants in 48/50 of these
patients (median 6.5, with a range of 1 to 16 rare variants per patient; Tables 3 and S6). Two/
50 patients (patients 40 and 41) carried no rare variants (Table 4). Manual inspection of the
alignment files of the class 5 and 4 variants showed good quality mapped reads, with Sanger
sequencing confirmation performed for 3 class 5 variants; PTEN p.V217D, TNFAIP3 p.R217X
and RNF213 p.D4013N. (S2 Fig). Confirmatory analyses by Sanger sequencing of class 4 or 5
variants were not performed for this study in all instances since this has now been shown to be
redundant for capture-based methods with good coverage, [26]; however, all patients with
potentially clinically actionable results were referred on to regional genetics services for confir-
mation of any relevant genetic findings as part of routine clinical care.

Clearly pathogenic variants (Class 5). Six/50 patients (12%) with unknown diagnoses
had at least one class 5 (clearly pathogenic) variant (Table 3; patients 23-28). These patients
fulfilled the pathogenicity criteria from literature evidence and pertinent functional laboratory
immunological data supporting disease-genotype concordance as discussed below.

One child (patient 23), referred with cutaneous vasculitis and recurrent upper respiratory
tract infection was found to have the deleterious p.V217D mutation, in Phosphatase and Ten-
sin homolog (PTEN) gene. This mutation has been previously described in a Korean patient
with Cowden syndrome [27]. Clinical examination of our patient showed that he had features
compatible with Cowden syndrome including autism and macrocephaly. This mutation was
confirmed to be de novo in the index case by Sanger sequencing of the index case and parents.

A diagnosis of haploinsufficiency of A20 (HA20) was made in patient 24 who presented
with uveitis, mouth ulcers, and vasculitic skin lesions. She was heterozygous for the highly pen-
etrant loss-of-function nonsense mutation in TNFAIP3 (p.R271X), recently reported by Zhou
et al [28] as the cause of HA20. Testing of the parents revealed that this heterozygous mutation
was inherited from the mother, who had previously been investigated for a milder, uncharac-
terised inflammatory phenotype.

We found a genetic cause of familial moyamoya disease in patient 25, who was heterozygote
for the RNF213 p.D4013N mutation previously reported in familial moyamoya disease [29,
32]. This mutation was confirmed by Sanger sequencing and found to segregate with the phe-
notype in the affected father and sister.
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A firm molecular diagnosis could not be made in two patients (Patient 26 and 27) who
were monoallelic for the UNC113D p.R966W variant, previously reported in association with
digenic familial haemophagocytic lymphohistiocytosis [30].

Patient 28, with unclassified AID responsive to colchicine, was found to have the highly
penetrant p.E131K mutation in the WAS gene. This is a well characterised mutation in males
with the X-linked Wiskott-Aldrich syndrome (WAS) [31], associated with early onset micro-
thrombocytopenia, eczema, and immunodeficiency. The family history of this patient was
notable because there were no males in eight generations. Although our female patient was a
carrier and had a normal platelet count, this mutation could contribute to her autoinflamma-
tion since it is increasingly recognised that autoinflammation and autoimmunity are impor-
tant features of WAS [33], and symptomatic female carriers have been reported. At the time of
writing, studies examining WASP levels and X-inactivation are ongoing.

Likely pathogenic variants (Class 4). Eleven/50 subjects (22%; patients 29-39) with likely
pathogenic (class 4) variants are summarised in Table 3.

Low penetrance AID mutations were found in 2 patients: TNFRSFIA p.R92Q in patient 37
with clinical features of TRAPS; and NLRP3 p.V198M in patient 38 with clinical features of CAPS.
A diagnosis of Majeed syndrome was confirmed for patient 29 with a very typical pheno-

type (Table 3) and compound heterozygous mutations in LPIN2 (p.P626S and p.S203F).
Although only the p.S203F LPIN2 variant was predicted damaging by MutationTaster, the fre-
quency of the p.P626S variant is reported to be significantly higher in patients with AID [10].

We also observed the LPIN2 p.P626S variant in Patient 30, who initially presented with an
unclassified AID. This patient’s clinical features were not compatible with Majeed syndrome,
but were compatible with the autoimmune lymphoproliferative syndrome (ALPS). This
patient was also found to have a class 4 variant in CASP10 (p.K99E); this prompted further
immunological investigations which revealed abnormalities consistent with a diagnosis of
ALPS type 2A (Table 3) [34].

Patient 31 with a strongly suspected diagnosis of APLAID carried two mutations in PLCG2,
a recently described dominant AID. Co-segregation analyses and further investigation is ongo-
ing in available family members.

Patient 39 had 3 predicted deleterious variants in TRAPI, a novel gene found by our group
to be associated with a new autosomal recessive AID [35].

Two patients with suspected DADA (patients 33 and 35) both carried the 5UTR CECRI
variant previously described to be associated with DADA [25], in combination with different
exonic CECRI variants.

Patient 34 had two DOCKS8variants (p.V1027I and p.D1347E), and a very convincing clini-
cal phenotype for hyper IgE syndrome.

Anecdotal evidence by De Jesus et al [36] support the importance of 2 novel heterozygous
mutations found in the tyrosine-protein kinase (LYN) gene in 2 unrelated patients (patients 32
and 36). Interestingly, the LYN p.Y508F variant identified in patient 34 leads to a loss of the
phosphorylation site, as was also found in the case reported by De Jesus et al who had nonsense
mutation at the same residue. This tyrosine residue at position 508 has been shown to be an
important regulatory site, as mice with the p.Y508F mutation have enhanced enzymatic activ-
ity and present with haemolytic anaemia [37], lethal autoimmune glomerulonephritis and pos-
itive autoreactive antibodies [38].

Variants of unknown significance (class 3) or carrier status for incidental mutations.

A total of 147 unique variants of unknown significant (VUS) in 78 genes were found in 31

patients who had no class 5 or 4 variants. Details of each patient and the various class 3 variants
are presented in S6 Table. Some of these variants were seen in multiple individuals, in particu-
lar 5/31 (patients 43, 49, 54, 62, 71) are carriers of the mild pyridoxine responsive CBS p.1278T

PLOS ONE | https://doi.org/10.1371/journal.pone.0181874  July 27,2017 13/20


https://doi.org/10.1371/journal.pone.0181874

@° PLOS | ONE

Targeted NGS panel for autoinflammation and vasculitis

variant associated with homocystinuria [39]. Other recurrently observed class 3 variants in at
least 5 or more individuals were NCFI p.R90H (found in 23 of the 30 patients) which may be
caused by pseudogene interference, TGFBRI non-frameshift deletion p.17-20del (found in 5 of
the 31 patients), and TGFBR2 p.E150fs (found in 15 of the 31 patients). During this study, a
diagnosis of myelodysplasia emerged for patient 51, and Schnitzler syndrome for patient 71,
both probably non-monogenic diseases that accounted for the phenotypes observed, and thus
compatible with the absence of any class 4 or 5 variants in these patients.

Validation of VIP2

For the validation of VIP2 with 166 genes in run 4, we chose 7 samples from previous runs
analysed by VIP1 (patients 3, 5 and 16, 27, 30, 58 and 65) to act as an internal control for VIP2.
Opverall, there was good concordance for all variants detected between the 2 runs for each of
the 7 patient samples, with only discrepancies found in 2 samples (patients 58 and 65; S7
Table). Three extra variants (class 3) were called for both patients 58 and 65 in the VIP2 run
due to improved coverage of certain regions in the VIP2 run (S7 Table).

Discussion

Gene-by-gene sequencing is an increasingly outdated, expensive, and often futile diagnostic
approach for patients with AID because there is an ever-increasing number of monogenic dis-
eases now known to cause autoinflammation, with increasingly overlapping phenotypes that
now also include vasculitis and immunodeficiency [2-4]. Furthermore, the phenomenon of
somatic mosaicism is particularly clinically relevant for autosomal dominant AID, and cur-
rently not confidently detected by conventional Sanger sequencing methodologies [5, 6, 40,
41]. NGS now provides the potential for sufficient breadth and depth of genetic sequencing to
overcome the inherent limitations of conventional sequencing in this clinical context [10].

We designed a targeted next-generation sequencing gene panel (VIP) to screen patients
referred to a specialist clinical service for autoinflammation and vasculitis. The inclusion crite-
ria for access to this screening test were deliberately liberal since this most reliably reflects the
nature of the referrals and clinical need of our specialist service. VIP was sensitive and specific
for the detection of known mutations in 22 controls, although unblinded analyses of the first
16 of these controls resulted in a higher yield. This emphasises the importance of communica-
tion between clinicians and clinical scientists for maximising clinical impact.

Application of VIP to a cohort of 50 patients with unknown diagnoses resulted in a class 5
mutation detection rate of 12%, and class 4 variant detection rate of 22%. Overall, the clinical
impact of VIP was a firm or strongly suspected molecular diagnosis in 16/50 (32%) previously
undiagnosed patients (Table 3). VIP reliably detected different types of mutations, including
rare and common SNV’s, insertion/deletions, splice-junction and variants in upstream pro-
moter regions, and somatic mosaicism. Regarding this latter point, the first version of the
panel (VIPI; targeting 113 genes) reliably detected NLRP3 somatic mosaicism of 3%; VIP2
provided broader coverage since it targeted 166 genes, and also detected the aforementioned
3% somatic mosaicism for NLRP3, emphasising the superior breadth and depth of next-gener-
ation sequencing. Since 3% mosaicism is arguably a very low level and probably uncommon in
this setting, we suggest that this sensitivity will capture most (if not all) mosaic CAPS patients,
since most reported mosaic NLRP3 mutation cases are 4.2-35.8% [6, 9, 40-43].

The best choice of NGS methodology to use (massively parallel sequencing of selected
genes; WES; whole genome sequencing [WGS]; or targeted gene panel sequencing) is highly
dependent on factors that include the intended clinical setting and indication for the test, cost,
and availability of sufficient computing capacity and bioinformatics expertise to handle the
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different size and type of datasets appropriately [44]. The main argument for utilising a targeted
approach in routine clinical care is that it minimises the ethical issue of incidental findings of
mutations in genes that bear no relation to the clinical phenotype under scrutiny, as emphasised
by the European Society of Human Genetics [45]. Clinicians can also design panels targeting
genes of interest to suit their own clinical practice: as well as AID genes, we included a range of
immunodeficiency genes in VIP since we were increasingly aware that autoinflammation could
be a feature of primary immunodeficiency [13]; and important genetic mimics of vasculitis
(congenital vasculopathies). Moreover, targeted approaches provide superior sensitivity for the
detection of variants with low level allele frequency compared with WES; and are more amena-
ble to report and return of clinically actionable results in a timely fashion [46].

A notable limitation of gene panels targeting known genes is that this approach cannot be
used to discover novel genetic diseases; that said, unexpected phenotypes can still be detected,
as exemplified by patient 23 who presented with cutaneous vasculitis caused by immune dysre-
gulation associated with Cowden syndrome caused by mutation in PTEN [47, 48]; and patient
28, a female with unclassified autoinflammation and the unexpected finding of the highly pen-
etrant ¢.391G>A, p.E131K mutation in WAS (Table 3) [31]. Targeted panels also require
intermittent updating and refinement as new diseases genes are discovered. Clinical WES with
targeted gene analysis could offer the opportunity to combine targeted genetic screening with
future research for gene discovery. In our experience, however, technical issues in relation to
depth of coverage, bioinformatics, and manpower required to interpret results currently limit
this approach for routine clinical genetic screening.

In terms of the time and cost, it is difficult to formally quantify the exact savings when
directly comparing our VIP panel to Sanger sequencing. The direct sequencing cost of muta-
tion screening for the 166 genes listed in VIP2 (S2 Table) was £397, and thus comparable to
the cost of screening one single gene using Sanger methodology (£400). Thus, whilst the direct
costs of genes sequenced is substantially lower than conventional sequencing, there are other
costs associated with targeted gene panels that require consideration, particularly in relation to
time spent on interpretation of results, and report generation.

Conclusions

In conclusion, we have described the development of a NGS targeted gene panel, the “Vasculitis
and Inflammation Panel” (VIP). We then evaluated its clinical impact for paediatric and adult
patients referred to a highly specialised service for autoinflammation and vasculitis. A signifi-
cant diagnostic contribution was observed in 32% of patients with previously unclassified phe-
notypes. The level of diagnostic yield obtainable in a timely manner can have a profound
impact on patient management, with improved use of targeted therapies, prognostication, and
genetic counselling. We emphasise that the success of this approach relies upon its use in the
context of a highly specialist clinical service for patients with AID.

Supporting information

S1 Fig. Flowchart of the process of VIP development and evaluation. Identified variants in
samples form undiagnosed patients were classified as either clearly pathogenic (class 5), likely
to be pathogenic (class 4) or unknown significance as recommended by the Association for
Clinical Genetic Science (ACGS [20]). All known variants in positive samples were identified
by both VIP1 and VIP2. *Of these 9 positive controls, 7 of these overlapped with the 20 positive
controls for VIP1.

(TTF)
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S2 Fig. Integrative Genomic Viewer (IGV) screenshot and Sanger electropherogram of 3 of
the 5 identified Class 5 variants; A) PTEN p.V217D, B) TNFAIP3 p.R217X and C) RNF213 p.
D4013N. All had good quality mapped reads and were determined to be correct by Sanger
sequencing (right panel). The red asterisk indicates nucleotide substitution in both IGV and
Sanger chromatogram traces.

(TIF)

S1 Table. detailed information for VIP1 genes.
(XLSX)

$2 Table. detailed information for VIP2 genes.
(XLSX)

S3 Table. SureDesign description of probes for VIP1 and VIP2.
(XLSX)

S4 Table. list of targeted regions with coverage less than 30x.
(XLSX)

S5 Table. list of captured regions with more baits added to improve coverage.
(DOCX)

S6 Table. Clinical features and genetic variants identified in patients with variants of
unknown significant.
(DOCX)

S$7 Table. Comparison of identified variants between VIP1 and VIP2 for 7 samples tested
in duplicate.
(DOCX)

S1 File. Bioinformatics parameters used for both Genesis and SureCall pipelines.
(DOCX)
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